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We present a microscopic derivation of dissipative (nonideal) hydrodynamic- 
like equations for crystals. The local density changes and the lattice displacement 
(distortion) are treated as independent. In this way we take into account all the 
eight slow modes predicted by the phenomenological theory, including the so- 
called vacancy diffusion mode. However, microscopically derived hydrodynamic- 
like equations are simpler than those postulated in the phenomenological theory. 
We also derive the exact formal expressions for the solid-state transport coef- 
ficients in terms of the Green-Kubo integrals. 

KEY WORDS: Statistical mechanics; nonequilibrium statistical mechanics; 
crystals; slow (hydrodynamic and broken symmetry) modes; transport coefficients. 

1. I N T R O D U C T I O N  

The purpose of this paper is to provide a statistical mechanical basis for the 
phenomenological theory of dissipative transport in (classical) crystals. 

The long-time large-scale dynamics of a macroscopic system can be 
described in terms of a few collective variables. These are so-called slow 
modes of the system of interest. They owe their existence to the local con- 
servation laws and to spontaneous breaking of continuous symmetries, t ~) 

In the simplest case of a one-component fluid there are three conserva- 
tion laws: number of particles, momentum (three components), and energy. 
These conservation laws are local, i.e., the densities of the conserved quan- 
tities can change only due to flow of these quantities. More precisely, time 
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derivatives of the densities can be expressed as divergences of the corre- 
sponding currents. Hence, the deviations of the number, momentum, and 
energy densities from their equilibrium values have lifetimes that are 
proportional to their characteristic wavelengths. In the long-wavelength 
limit these lifetimes become larger than lifetimes of all of the other 
variables. Therefore, after the initial (slip) period, the dynamics of the fluid 
can be completely described in terms of the number, momentum, and 
energy densities. The corresponding equations of motion are known as 
hydrodynamic equations. 

This simple picture changes if in the equilibrium state of the system of 
interest a continuous symmetry is spontaneously broken: ~2~ First, there 
appear low energy excitations that correspond to fluctuations in the sub- 
space orthogonal to the direction in which the system has ordered. These 
excitations are known as Goldstone modes. Second, the transverse correla- 
tion functions ~ are long-ranged: they decay algebraically. Third, a rigidity 
emerges: the system exerts a restoring force in response to a nonuniform 
displacement in the subspace orthogonal to the direction of the ordering. 
One of the consequences of the new equilibrium behavior is emergence of 
the additional slow modes. These modes are the above-mentioned low 
energy excitations (Goldstone modes). Hereafter we will use the name 
hydrodynamic-like equations for the (coupled) equations of motion for both 
the densities of the conserved quantities and the Goldstone modes. 

The time evolution of the densities of the conserved quantities is slow 
because of the existence of the conservation laws. The Goldstone modes 
belong to the set of slow modes due to small (vanishing in the long wave- 
length limit) energy cost associated with them. More precisely, it is the 
long-wavelength divergence of the transverse correlation functions that 
makes their relaxation times arbitrary large. 

Our aim in this paper is to present a complete statistical mechanical 
description of the dissipative transport in one of the most common broken 
symmetry states: crystalline solids. Let us first introduce the problem. The 
general theory as outlined above disagrees with the standard theory of 
elasticity. The theory of elasticity deals with six sound modes or elastic 
waves (three branches for a given wavevector, two possible velocity signs 
for a given branch) and an energy mode, a total of seven slow modes. On the 
contrary, the general theory clearly says that there should be eight modes: 
we have five densities of conserved quantities (number, three components 
of momentum, and energy) and three modes associated with broken trans- 
lational symmetry (the original symmetry group is three parameter, hence 
the three broken symmetry modes). 

The deficiency of the standard approach was first discussed in a seminal 
paper by Martin et al. ~3~ They argued that the mode missing in the usual 
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description should be associated with the vacancy diffusion. To include this 
mode it was necessary to treat the particle density and the displacement 
field independently. 

Both the analysis of Martin e t  al. and a later study by Fleming and 
Cohen ~4~ of the spectrum of the light scattered by crystals were purely 
phenomenological. In particular the reactive and dissipative coefficients 
were treated as parameters. The problem of deriving the full macroscopic 
description of the long-time large-scale crystal dynamics from the micro- 
scopic statistical mechanical theory remained unsolved. 2 

It seems now that the main stumbling block was the lack of a micro- 
scopic expression for the slow mode associated with broken symmetry, i.e., 
for the displacement field. It should be emphasized that such an expression 
cannot identify the lattice sites with the (averaged) positions of specific 
particles. Such a procedure would necessarily lead to a relation between 
the displacement field and the density, and to the neglect of the vacancy 
diffusion mode. c41 

Recently, in collaboration with Matthieu Ernst, we postulated a 
microscopic expression for the displacement field in crystals, c7~ WE showed 
that the displacement field correlation function is long-ranged, derived the 
nondissipative equations of motion for the density, momentum and broken 
symmetry modes (the energy mode was neglected), and obtained new exact 
expressions for the isothermal elastic constants. 

In this paper we complement the study of ref. 6 with a derivation of 
the dissipative equations of motion for all the eight slow modes, including 
the energy mode. We assume that only the correlation functions that h a v e  

to diverge in the long-wavelength limit (due to broken translational sym- 
metry of the crystalline state) are singular and all the other ones are regular 
in this limit. We note that this assumption leads to a frequency matrix that 
is considerably simpler than that postulated in the phenomenological 
approaches. As a result, the hydrodynamic-like equations derived here, 
while having the same general structure as those postulated in the phenom- 
enological theory, are also simpler. 

As a by-product of the derivation of the hydrodynamic-like equations 
we obtain exact expressions for the transport coefficients. In particular we 
derive for . the first time the transport coefficients associated with the 
Goldstone modes of crystals. 

The paper is organized as follows. In Section 2 we briefly review the 
microscopic definition of the displacement field. The review is followed by 
a derivation of the dissipative equations of motion in Section 3, and an 

-' In a very interesting paper Kirkpatrick el aL ~ considered a kinetic theory of transport in 
a hard-sphere crystal. However, they included only the seven standard modes. 
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analysis of the vacancy diffusion in Section 4. Next, in Section 5 we analyze 
the Green -Kubo  expressions for the transport  coefficients. We conclude 
with a summary of the results and some comments. 

2. M I C R O S C O P I C  DEF IN IT ION OF THE D I S P L A C E M E N T  FIELD 

In the crystalline phase the translational symmetry of the Hamiltonian 
is spontaneously broken. The general theory predicts that the symmetry 
breaking leads to emergence of the new set of slow modes that correspond 
to displacements 3 of the broken symmetry state in the direction orthogonal 
to the direction of the ordering. 

The displacement in the direction orthogonal to the ordering is a 
change of the broken symmetry state that leads to a different state of the 
same energy as the original state. For  a crystalline solid this is a uniform 
translation. A translation by a vector a of small magnitude [a[ changes the 
density profile n~(r) of the original state to the density profile n~,(r) of the 
new (but equivalent) state: 

0ne(r) 
ne(r)~n'e(r)=n~(r) 0r a (2.1) 

Let us now assume that translation vector changes slowly in space, or 
more accurately, that a(r) is a periodic function, a(r) = ae ;k" r. In this case 
we generalize (2.1) to 

n,,(r) ~ n'~(r) = ne(r) c~n,,(r) a(r) = n ~ ( r ) - e  ik'r an,,(r) 
cOr ar a (2.2) 

We conclude that slowly varying displacement of the crystalline state 
in the direction perpendicular to the direction of the ordering is signaled by 
the change of the density that is proport ional  to - e  ~k'r Vn~(r). Note that 
the average macroscopic density is not changed. 

It follows that in order to get the k Fourier component  of the lattice 
displacement from the microscopic density field one should project the 
microscopic density change onto (appropriately normalized) - e  ik'r Vne(r). 
The question arises as to what kind of a scalar product should be used for 
the projection. It should be noted that this projection should express 
geometrical similarity between the two quantities, not the thermodynamic 

Note that in this section we use the word displacement in two different meanings: to denote 
a deviation from the original equilibrium state and to denote a distortion of the lattice. It 
should be clear from the context which of these two meanings is intended. 
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one. Thus it does not seem appropriate to use here the standard scalar 
product induced by the equilibrium average [see Eq. (3.2)]. 

We proposed in ref. 6 to use the following scalar product: 

(a, b ) = 1  I dr a*(r) b(r) (2.3) 

Using the scalar product (2.3), we arrived at the following expression for 
the microscopic (lattice displacement field: 16~ 

u(k)=~V (_el k 0n~.(r)0r , f in)= jV'I ~'.iGnco fin(k-G) (2.4) 

here fin is the difference between the microscopic density field n, 

n(r) = ~ fi(r - R,) (2.5) 
i 

and its average equilibrium value n,., 
fin(r) = n(r) - ne(r) (2.6) 

and X is the normalization constant, 

1 (' 0n~,(r) .r 0n~,(r)'~ ~/" ='~ ~ - -e  i k ' r  , - -e ik  (2.7) 
Or~ Ors } 

Greek indices denote the Cartesian components of vectors and tensors, and 
the summation over repeated indices is always assumed. Finally, in Eq. (2.4) 
Z o  denotes summation over the reciprocal lattice vectors G and no is the 
amplitude of the component of the density profile corresponding to G. 

Note that in general Y should be replaced by a second-rank tensor. 
Here we have assumed cubic symmetry. Moreover, to the leading order in 
the wavevector X can be replaced by its k = 0 value, 

' O 2  ' ~/'=-~ ~ [nGlz+(9(k2)=-~v Ivdr +(9(k z) (2.8) 

Here v is the volume of the unit cell. 
To justify definition (2.4) we showed 161 that the Fourier transform of 

the correlation function of the displacement field diverges in the long- 
wavelength limit. To this end we used Bogoliubov's inequality ~ 

(iAl2)oq (IBI2)=q >_. I(AB)=q 12 (2.9) 
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with A=V-'/2fi'u(-k) and B=V-t/2fi.g(k). Here brackets <. . .>~q 
denote the equilibrium ensemble average, fi is a unit vector, V denotes the 
volume of the system (the thermodynamic limit is implied), and g(k) is the 
Fourier transform of the microscopic momentum density 

g(r) = ~ mV, g(r - R j) (2.10) 
i 

with V~ the velocity of the ith particle and m its mass, and a dot denotes 
the time derivative. We argued that the cross-correlation tends to a finite 
number at k ~ 0. 

k,,r (O,,,(rl O,,,I,I) 
~i~mol (AB>~" l=-~r \  c3r= ' 0r= J =kuT (2.11) 

Furthermore, we expressed < IBl2)~q in terms of the correlation function of 
the stress tensor if(k) that is defined through the continuity equation for 
the momentum: 

g(k; t ) =  - i k -  #(k; t) (2.12) 

Explicitly, we got 

1 = k  2 1 <lBI2>~q=-~ <lg(k).al2>~q -~ <lf~. #(k).  ill'->., (2.13) 

where f~ = k/k. 
Finally, we considered Bogoliubov's inequality (2.9) at small wave 

vectors. We estimated the cross-correlation (AB>~q using relation (2.11) 
and arrived at the inequality 

1_ < I fi" , I (kl~ T) 2 
V u(k) l -> . ,  >~k2 l imk-0  ( l /V)<  Ik" ~Y(k) �9 fil2)~q 

(2.14) 

Equation (2.14) shows that (in general) all the functions ( u = ( - k )  Ul~(k)>eq 
diverge at least as k 2 as k ~ 0. 

The correlations of the displacement field (2.4) are the only correla- 
tions that, on the basis of the Bogoliubov's inequality, have to diverge as 
k--*0. Indeed, if one replaces (-eJk'rVn,,(r),~Sn) in (2.4) by a more 
general expression (J~6n), then one easily verifies that the expression 
corresponding to (2.11) is proportional to (f, ft. Vnc). For functions f ( r )  
orthogonal to Vn,,(r), only a trivial inequality survives, and the argument 
for the existence of the long-range order in ( f ( - k )  f(k)>eq breaks down. 
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We therefore follow Occam razor and assume that only the correla- 
tions ( u ~ ( -  k)u/~(k))~q are singular, and more explicitly we assume that 
they diverge exactly like k -2. Furthermore, we assume that other correla- 
tion functions are regular for k---, 0. 

3. D I S S I P A T I V E  E V O L U T I O N  E Q U A T I O N S  FOR THE S L O W  
V A R I A B L E S  

Apart from the displacement field we also have the usual five slow 
hydrodynamic variablesJ ~'81 These are number, momentum, and energy 
densities. These variables satisfy local conservation laws: their time 
derivatives equal the divergences of the corresponding currents, and there- 
fore their time evolution is slow in the long-wavelength limit. 

We study the time evolution of the deviations of the slow variables 
from their equilibrium values, 5n(k), g(k), 5e(k), and u(k), for small 
wavevectors k---, 0. Here 3n(k) and g(k) are Fourier transforms of the 
density change (2.5) and the momentum (2.10), respectively, and u(k) is 
given by (2.4). Finally, 5e(k) is the Fourier transform of the deviation of 
the energy e, 

-~mV;+�89 ~ ~(Ro.) 5 ( r - R i )  (3.1) 
" . i ~ i  

from its equilibrium value. In Eq. (3.1) ~b(R) is the pair potential and 
R~i= IR~-Ril .  Note that (g(k))~q and (u(k))~q are vanishing. 

To derive the equations of motion we use the projection operator 
method ~ we define a scalar product 4 

1 
( ai l aj) =-~ ( 5ai(-k) Oai(k))~q (3.2) 

Here 5ai(k), i =  1 ..... 8, denote the deviations of the slow variables from 
their equilibrium values. 

The variables 5n(k), g(k), 5e(k), and u(k) are not mutually orthogonal 
with respect to the scalar product (3.2). First, the energy variable contains 
a part parallel to the density variable. Second, the submatrix (u~ lu/~) has 
nonvanishing off-diagonal elements. 

4 Note that tbr a broken symmetry state we have two scalar products. One has been defined 
by Eq. (2.3); it determines the value of the slow mode in terms of the geometrical structure 
of the broken symmetry phase. The other, defined through Eq. (3.2), is the standard scalar 
product induced by the equilibrium ensemble average that is used in the projection operator 
method. 
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It is convenient to subtract from the energy fie(k) the part parallel to 
the density fin(k) [in the sense of the scalar product (3.2)]" 

fie(k) ~ fie(k) - fin(k)(nln) -i (n[e) (3.3) 

The new variable fie(k) - fin(k)(nln) -~ (n l e)  has a natural interpretation: 
in the long-wavelength limit it is proportional to the deviation of the 
temperature from its equilibrium value, 

nocvfiT(k)=fie(k)-fin(k)(nln) -l (hie)  (3.4) 

In Eq. (3.4) no is the average macroscopic density and cv is the specific 
heat per particle at constant volume. 

The derivation of the dissipative equations of motion is fairly 
standard. Here we will only sketch the actual calculations. The Laplace 
transform of the equations of motion have the following form: 

z(a;(k; z ) )  - (a;(k; t = 0 ) )  = ~  ((2,./(k) + U(/(k; z))(aj(k; z)) 
J 

(3.5) 

In (3.5) I2~(k) is the frequency matrix and U~/(k; z) is the transport matrix, 

O u ( k ) = ~ ( a j l a / ) - ' ( a /  ~ai) 
I 

(3.6) 

Uu(k'z)=~ (ajla')-~ ( s z - .~Z:--------~l -,~aai I (3.7) 

Here (aila/) -~ denotes the inverse of the matrix (ajla/), -~ is the 
Liouville operator, ~81 and .~ is the projection operator on the subspace 
orthogonal to the slow variables, 

= : - ~  (3.8) 

where d r is the identity and ~ is the projection operator on the slow sub- 
space, 

.r = }-" fia,(k)( a, [ a/) - '  (col f )  (3.9) 
i , j  

To get the explicit form of the nondissipative part of the evolution 
equations we have to calculate the inverse of the correlation matrix and the 
matrix elements of the Liouville operator ~ .  
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The calculation of the inverse matrix (a~laj) -~ is relatively simple. 
First, the densities of the conserved quantities 0n(k), g(k), and nocvOT(k )  
are mutually orthogonal. Second, the correlations between the number and 
energy densities and the displacement field vanish in the k ~ 0 limit, 

( n l u ~ )  ~ O ( k ) ,  ( e l u ~ )  ~ O ( k )  (3.10) 

This fact follows from the assumption that these correlations are regular in 
the k--* 0 limit and therefore can be expanded around the k = 0 wave- 
vector. Third, the correlations of the displacement field (u=lu/~) are the 
only divergent correlations. It can then be shown that the off-diagonal 
elements of the inverse matrix ( a ~ l a j )  - t  are (i) zero, when both a~ and a i 
are the densities of the conserved quantities, (ii) of the order of k 3, when 
one of a;, a~. is the displacement mode, or (iii) of the order of k 2, when both 
ae and aj are the displacement modes. Therefore the only elements of the 
inverse matrix that contribute to the hydrodynamic-like equations are 

( n J n )  - '  = (noS(0))-  ' 

( g~ I g/~) - i  = (nomkB T)  - i  O~/~ 
(3.11) 

( n o c v T  [ n o c v T )  - i  = (nocvk~ T 2) - i  

(us  ]u/~) - t  = (kBT) -I  2~/j,,,~k~,k,~ 

where the last equality was proven in ref. 6. In Eqs. (3.1 I) S(0) is the k = 0 
value of the structure factor, and the tensor 2~a~,,~. is defined as 

On,.(rl ) On,.(rz) 
2 , I~ ,6_kBT t'j d r  t dr ,  - -  - -  c 2 ( r l ,  r 2 )  rlz~,rl2,~ (3.12) 

2 V - Or l~ Or 2/~ 

Here c2(r~, r2) is the Ornstein-Zernike direct-correlation function of the 
solid, defined as the inverse of the density correlation function. ~9~ 

Furthermore it can be shown that the only nonzero matrix elements of 
the Liouville operator ~ are 

( g~ I ~ n  ) = - - ( n l ~ g ~ )  = - i k ~ n o k B  T 

(g~ l  ~ n o c v O T )  = - ( n o c v O T I  s = - i k ~ ( k B T  2) ~ ,, 

( g ,  [ ~u/~)  = - ( us I s = O~/~(kB T)  

(3.13) 

Note that to write down (3.13) we again used cubic symmetry, which leads 
to (tr~/~)cq = p  6~/~. 
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It is worth emphasizing here that the elements of the inverse matrix 
(a i la i )  -i  involving the densities of the conserved quantities are finite in 
the k ~ 0 limit, and the matrix elements of the Liouville operator involving 
the densities of the conserved quantities are proportional to the wave- 
number, i.e., they vanish in the former limit. On the other hand; the matrix 
elements (u~lu/~) - t  vanish as k-' in the k--*0 limit and the matrix 
elements of the Liouville operator involving the displacement field are 
finite. Correspondingly, the elements of the frequency matrix involving the 
densities of the conserved quantities vanish as k because of the vanishing 
matrix elements of the Liouvillian and the elements of the frequency matrix 
involving the displacement field vanish as k -~ because of the vanishing 
inverse static correlations or are finite: As was announced in the Intro- 
duction, the two subsets of the slow modes are slow because of the two 
different reasons. 

To make the dissipative part of the equations of motion slightly more 
explicit we define transport coefficients. We note that the time derivatives 
of the densities of the conserved quantities are proportional to the 
wavevector, 

~o &~(k; t) = - i k -  g(k; t) 

~g(k ;  t ) =  - i k - 6 ( k ;  t) 

5{'noC,.,~T(k; t ) =  - n o c , . k "  jr(k;  t) 

(3.14) 

where the last equality serves to define the temperature current j r. As usual 
this wavevector dependence of the time derivatives (3.14) will be separated 
out while defining the transport coefficients. On the other hand the time 
derivatives s of the components of the displacement field remain finite 
in the k--. 0 limit. Therefore we will use the full time derivative 5% in the 
definition of the transport coefficients. 

We define the transport coefficients as follows: 

1 li lira( ~ 1 / (3.15) 

(noc,.) z ( 1 / 
X:q~- k~T 2 ---olim k-olim j r  ~ Z--~ZPZ) ~j/T (3.16) 

n . c , , l i  m lira ( j ~ - I 2  ~ 1 / (3.17) 

lim lim 5au~ ~ - -  ~LPu/r (3.18) 
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Taking now the large-scale long-time limit of Eqs. (3.5) and using 
Eqs. (3.11), (3.13), and (3.15)-(3.18) we can write down the dissipative 
(nonideal) hydrodynamic-like equations for crystals: 

a 
rn ~ (n(k; t))  = -ik~(g~(k; t))  (3.19) 

at (g~(k; t))  = - ik~ ~ (n(k; t)) - ik~  ~ ,, (fiT(k; t))  

m n  o 

a er (ap) 
noc,, N <6T(k; t)> = - - -  

D?no n 

+ i~/~k~2/~,,~t,k,~k,, ( u~.(k; t) ) 

(3.20) 

a (g~(k; t ) )  
at (u~(k; t))  - mn0 

(3.21) 

(~/~2/~.,~1,k,~k,, ( uy(k; t) ) 

i 
s 6T(k; t) ) (3.22) 

T 

The equations of motion (3.19)-(3.22) are the most important result, 
of this paper. It is worthwhile to compare them to the phenomenological 
equations/34' First, it should be noted that in the phenomenological 
approaches an additional variable was introduced. This variable was 
thermodynamically conjugate to the strain (displacement gradient), see, 
e.g., Eqs. (2.5)-(2.6) of ref. 3. The precise identity of the new variable was 
not clear. Here we have not introduced any additional variable. Instead, it 
is the contribution to the stress given by -i,~/~.,~k,~u/~ that is a reversible 
response to a displacement gradient V,~u/~. Second, several phenomenologi- 
cally postulated reactive coefficients are absent in the microscopically 
derived hydrodynamic-like equations. This fact (which is closely related to 
the first observation) can be traced back to the assumption that the 
correlations between the energy and density fluctuations land the displa- 
cement field are regular in the k ~ 0 limit. At present we do not have 
any argument to the contrary. Third, all the reactive coefficients in 
Eqs. (3.19)-(3.22) can be easily expressed in terms of the long-wavelength 
limits of the microscopic correlation functions, and therefore can be 
measured in computer simulations or calculated from approximate 
theories. This is in contrast with the phenomenologically postulated reac- 
tive coefficients. 
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4. V A C A N C Y  D I F F U S I O N  M O D E  

Finding explicit expressions for the decay rates of all the hydro- 
dynamic-like modes for a general crystal is a tedious and thankless task. 
Here we will use a quick and dirty method to find the time dependence of 
the new mode, i.e., the vacancy diffusion mode. For  even greater simplicity 
we will consider an isothermal situation, i.e., we will put fiT(k; t ) =  0. 

To define the nonequilibrium density of vacancies we looked in ref. 6 
for a mode that does not decay on the level of ideal elasticity: on physical 
grounds we can expect the vacancy concentration to decay via a diffusive 
process that is absent on the nondissipative level of description. With this in 
mind we defined the nonequilibrium density of vacancies as the following 
linear combination of the density and displacement fields: 

(fic(k; t ) )  = - (fin(k; t ) )  - ik-  no( u(k; t ) )  (4.1) 

Note the difference in sign between fin and fic; the density n counts the 
number of particles and c counts vacancies. 

As noted in ref. 6, the vacancy mode is not convected, it changes only 
due to the dissipative processes. Explicitly, at constant temperature, 

a 
at ( fic(k; t ) )  = ik~/j2/~,,~,k,~k,,( u~,(k; t ) )  (4.2) 

Let us now calculate the decay rate of the vacancy mode. We will look 
for a diffusive mode at constant temperature, 

(fin(k; t ) )  ~ fino(k) e - o~/~k~k/~, 

( g(k; t ) )  ,~ go(k) e -  ~ (4.3) 

(u(k; t ) )  ~ uo(k ) e -O'l'k'l'l ' '  

Substituting (4.3) into the equations of motion, we find that the lowest 
order k dependence of the amplitudes has to be 

fino(k) ~ 1, go(k) ~ k, uo(k) ~ 1/k (4.4) 

Equation (3.20) combined with relation (4.4) leads to 

kBT 
0 =  -ik~ - ~  (n(k;  t ) )  -2~l~y,~k~.k~(Ul~(k; t)) + (9(k 2) (4.5) 

Next we use Eq. (4.5) and the definition of the vacancy mode (4.1) to 
express the right-hand side of the equation of motion (4.2) in terms of the 
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vacancy density. In this way we get an equation of motion for the vacancy 
diffusion mode: 

0 
(tic(k; t ))  = -D=/~([~) k=k/~(~c(k; t)) (4.6) bS 

Here D(k) is the vacancy diffusion tensor: 

^ kBT ^ 
D~(k)  = ~ (=/~l/~,(k) L~'(f~) (4.7) 

In Eq. (4.7), l~/~(k) is defined as 

l=/ j (k) = )t~,/j,,,,[c~,l~ (4.8) 

and L~/~l([~) is the inverse of the wave propagation matrix, .6~ 

L~/~( [~ ) = l~/~( [~ ) + ~ [% [c /~ (4.9) ( )  

5. G R E E N - K U B O  EXPRESSIONS 

Our definitions of the transport coefficients (3.15)-(3.18) are not the 
Green-Kubo expressions. The former involve a projected evolution 
operator _~2~'.~, whereas the latter are the z ~ 0 Laplace transforms of the 
correlation functions of the currents, i.e., their time evolution is governed 
by the original evolution operator .L& However, it can be shown ~5~ that in 
the long-wavelength k ~ 0 limit the projected evolution operator .~.~.~ 
in the expressions (3.15)-(3.18) can be replaced by s In this way the 
expressions (3.15)-(3.18) can be reduced to the standard Green-Kubo 
form, 

1 fo "~ dt lim (-~a~/s(-k; O) .~a>,~(k; t))eq (5.1) 
q~/Jr,~ = ka TV k ~ o 

(noc,t)  2 
I :  dt lim (_~ j r ( -k ;  O) .~j~(k; t))eq (5.2) K=/~-ka T2V k - - O  

~/~ = kan~ f :  dt klim- o ( .~jr( - k ;  O) ~ p ( k ; / ) ) e q  (5.3) 

1 Io ~ dt lim (.~tt~( -k ;  O) .~d/~(k; t)~eq (5.4) 
(=/~-kBTV k~o 
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The Green-Kubo expressions (5.1)-(5.4) are different from the usual 
ones. First, there is additional subtraction in the expression for the projected 
stress tensor, 

(5.5) 

The additional subtraction term is formally of the order of k but it is 
absolutely essential to keep it. To realize that one should, note that 
the integral ~c~: dt(u~( - k ;  0) u~,(k; t))r k/~k,~ diverges in the k --* 0 limit: 
(i) the static correlations ( u ~ ( - k )  ur(k)),~ diverge as k--" and hence 
limk_ 0(u~( -k)uy(k) )~q  k/~k,~ is finite, and (ii) the displacement field u~ 
belongs to the set of slow variables and its characteristic relaxation time 
diverges in the long-wavelength limit. Note that this means that if one tries 
to calculate in the solid phase the Green-Kubo integral that gives the 
viscosity in the liquid phase, i.e., 

~ "-dt lim ((~a,/r 0))n,,i J (~ay,~(k; t))lluid)cq 

the result diverges. Moreover, a subtraction term similar to (5.5) should 
also appear in kinetic theory expressions for the solid state viscosities. 

Second, there are the new transport coefficients ~-and ~. They involve 
the long-wavelength limits of the time derivatives of the displacement field, 
or more explicitly, the combinations of the large wavevector components of 
the momentum density, 

t~(k; t) = 1 f dr e ik'r 6n,,(r) 6 
m~'--T fr~ fir g(r; t) 

1 
= m . Y  ~ G~G/~n-c'g/~(G; t)+gO(k) (5.6) 

Again, one should remember that it is the projected derivative that enters 
the expressions (5.3)-(5.4), 

g~(k; t) 
~ti~(k; t) = t~(k; t) (5.7) 

nollq 

Physically the subtraction (5.7) means that, for example, the contributions 
to the tensor ~" (and to the vacancy diffusion tensor /5) come from the 
difference of the rate of change of the displacement field and the number 
density current. 
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6. C O N C L U D I N G  R E M A R K S  

We presented here the first statistical mechanical analysis of dissipative 
transport in crystalline solids. The main results are the equations of motion 
for all the eight modes predicted by the general theory of systems with 
broken continuous symmetry. These equations have the same general form 
as those derived in the phenomenological (thermodynamic) approach. There 
are, however, notable differences that can be traced to assumptions about the 
long-wavelength behavior of cross correlations. We have assumed here that 
the cross correlations between the displacement field and the densities of the 
conserved quantities are regular in the long-wavelength limit. On the other 
hand, in order to get equations of motion postulated in the phenomenological 
approach one would have to assume that some of these correlations diverge 
in the former limit. In a sense the hydrodynamic-like equations derived here 
are the simplest equations that describe dissipative transport in crystals. 

One could also phrase the difference between the two approaches in the 
language of the Landau theory: c2~ we have assumed that the longitudinal 
part of the effective long-wavelength Hamiltonian is the same in both fluid 
and solid phases, whereas in the phenomenological approach it is effec- 
tively assumed that the qualitative form of the longitudinal part of the 
Hamiltonian changes. 

It would be interesting to analyze the long-wavelength behavior of the 
cross correlations. For example, one could try to derive an upper (lower) 
bound that would prove (disprove) that the cross correlations are regular. 

We derived the exact expressions for the transport coefficients of crys- 
tals in terms of the Green-Kubo integrals, i.e., integrals of the correlation 
functions of currents of the densities of the conserved quantities or of the 
time derivatives of the displacement field. The general form of such expres- 
sions was anticipated before. ~ Here we derived the explicit formulas 
for the Green-Kubo integrands. We noted that an additional subtraction 
term appears in the expression for the projected stress tensor. A similar 
subtraction term should also appear in the kinetic theory expressions for 
the viscosities. 

The expressions (5.1)-(5.4) can be used to evaluate the transport coef- 
ficients in.molecular dynamics simulations. This was impossible before 
when only general form of the Green-Kubo integrals was known. 

The expressions (5.1)-(5.4) can also be used as a starting point for 
approximate theoretical estimations of the transport coefficients. The most 
direct way to proceed is probably to use the hard-sphere model. In this 
case one could use an Enskog-like approximation for the Green-Kubo 
integrands. Explicit calculations will, however, be hampered by the lack of 
reliable information about the pair distribution function in the solid state. 
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Finally, we hope that the analysis presented here will help to extend 
the kinetic theory of transport in a hard-sphere crystal of Kirkpatrick 
e t  al.  (5~ to include the vacancy diffusion. 
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